The behaviour of MnO_2 in strongly acidic solutions

P. RUETSCHI

Leclanche S. A., 1400 Yverdon, Switzerland

R. GIOVANOLI

Institute of Inorganic Chemistry, University of Bern, Freiestr. 3, 3000 Bern, Switzerland

Received 10 September 1980

Different MnO_2 samples were equilibrated with H_2SO_4 solutions of varying concentrations and the equilibrium concentration of dissolved Mn³⁺ determined experimentally. Leaching in strong acid appears to be a useful tool for characterizing different types of MnO_2 materials. The equilibrium concentration of dissolved Mn³⁺ showed a sharp drop above 9 M H₂SO₄. The crystal structure of MnO₂ was not affected by acid leaching and only a slight grain coarsening was observed.

1. Dissolution chemistry

The electrochemical processes of MnO₂ in strongly acidic solutions involve a number of soluble manganese species [1, 2] of different valency, namely, Mn(II), Mn(III), Mn(IV) and Mn(VII). These soluble species may be distinguished by their absorption spectra and their equilibria have been studied by absorption spectrophotometry [3, 4]. For $2M_{2}3^{+} \rightarrow M_{2}2^{+} + M_{3}4^{+}$

$$2Mn^{\circ} \leftarrow Mn^{\circ} + Mn^{\circ}$$

values for the formal equilibrium constant

$$K = [Mn^{2+}] \cdot [Mn^{4+}] / [Mn^{3+}]^2$$

of 4.8×10^{-2} in 4 mol dm⁻³ H₂SO₄ to 2.0×10^{-3} in 12 mol dm⁻³ H₂SO₄ have been reported [5]. Clearly, Mn³⁺ is the dominant higher valency species. It is characterized by a dark, red-violet colour. Both Mn³⁺ and Mn⁴⁺ are relatively stable with respect to the oxidation of water (oxygen evolution); their half-lives at room temperature in $6 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4$ were found to be about two and six months respectively [3]. The permanganate ion, Mn(VII), on the other hand, is quite unstable and decomposes with evolution of oxygen to Mn³⁺ within hours.

2. Electrochemical equilibria between dissolved species and MnO₂

and

$$\log [Mn^{4+}] = -11.5 - 4 \,\text{pH}. \tag{7}$$

Electrochemical equilibria may be expressed

formally in terms of pH-potential relationships [6, 7].

$$Mn^{2+} \rightleftharpoons Mn^{3+} + e^{-}$$
(1)

$$E = 1.509 + 0.0591 \log [Mn^{3+}]$$

- 0.0591 log [Mn^{2+}]

and

$$Mn^{3+} \rightleftharpoons Mn^{4+} + e^{-}$$

$$E = 1.630 + 0.0591 \log [Mn^{4+}]$$
$$- 0.0591 \log [Mn^{3+}].$$

For the equilibria with solid MnO_2 one formally has:

$$Mn^{2+} + 2H_2O \rightleftharpoons MnO_2 + 4H^+ + 2e^-$$
 (3)

$$E = 1.228 - 0.1182 \,\mathrm{pH} - 0.0295 \log [\mathrm{Mn}^{2+}],$$

$$Mn^{3+} + 2H_2O \rightleftharpoons MnO_2 + 4H^+ + e^-$$
 (4)

$$E = 0.948 - 0.2364 \text{ pH} - 0.0591 \log [\text{Mn}^{3+}]$$

and

$$Mn^{4+} + 2H_2O \rightleftharpoons MnO_2 + 4H^+$$
 (5)

from which the following formal equilibrium 'activities' for higher valent manganese species are derived:

$$\log [Mn^{3+}] = -4.75 + 0.5 \log [Mn^{2+}] - 2 pH$$
(6)

$$g[Mn^*] = -11.5 - 4 \,\mathrm{pH}.$$
 (7)

The formation of Mn³⁺ by reaction between Mn²⁺

0021-891X/82/010109-06\$02.60/0 © 1982 Chapman and Hall Ltd.

```
109
```

(2)

Fig. 1. Equilibration conditions for MnO_2 in H_2SO_4 solutions.

and MnO_2 may be visualized either as a combination of the forward reaction of the process in Equation 1 with the back reaction of Equation 4, or by the combination of twice the back reaction of Equation 4 with the forward reaction of 3, resulting, in either case, in

$$MnO_2 + Mn^{2+} + 4H^+ \rightarrow 2Mn^{3+} + 2H_2O.$$
 (8)

 Mn^{3+} is the first oxidation product of Mn^{2+} and appears to play a key role as intermediate in the electrolytic process for manufacturing MnO_2 [8–10]. Its 'disproportionation' into Mn^{2+} and MnO_2 , the reverse of Equation 8, involves the electrochemical component reactions already mentioned but in the opposite directions.

In strongly acid solutions, and depending also

on the Mn^{2+} concentration, the electrode potential of MnO_2 rises above that of the oxidation of water to oxygen. Under these conditions MnO_2 should decompose theoretically according to

$$2MnO_2 + 6H^+ \rightarrow 2Mn^{3+} + 3H_2O + \frac{1}{2}O_2$$
 (9a)

or

$$MnO_2 + 2H^+ \rightarrow Mn^{2+} + H_2O + \frac{1}{2}O_2.$$
 (9b)

The rate of this process, however, appears to be inhibited because of an oxygen overvoltage.

3. Non-stoichiometry of MnO₂

It is well known that Equations 3 and 4 represent the actual processes inaccurately. In fact, one has to take into account that MnO_2 has a variable stoichiometry [11]. When MnO_2 is equilibrated with strong acids one should expect trivalent manganese to be leached from the lattice [1]. This may be formulated as follows:

$$(MnO_2)_{2n-3} \cdot (MnOOH)_{4-2n} \cdot mH_2O$$

+ $3(4-2n)H^+ \rightarrow (2n-3)MnO_2$
+ $(4-2n)Mn^{3+} + (8-4n+m)H_2O.$ (10)

4. Experimental procedure

Samples (10 g) of commercial electrolytic γ -MnO₂ (Toya Soda Manufacturing Co., type HH, ICS No. 1) were treated with H₂SO₄ solutions (100 cm³) of different concentrations over a

Fig. 2. Equilibrium concentrations of Mn^{3+} as a function of H_2SO_4 concentration.

Fig. 4. Total amount of dissolved manganese (Mn^{2+} plus Mn^{3+}).

Fig. 5. Dissolution of γ -MnO₂ particles (dark portions) in 4 mol dm⁻³ H₂SO₄. (a) 0 h, (b) 6 h and (c) 96 h.

Fig. 6. Electron micrograph of the starting material γ -MnO₂, ICS No. 1, at \times 50 000 prior to acid treatment.

period of 26 weeks in glass-stoppered Erlenmeyer flasks at room temperature (21 ± 1° C). The flasks were shaken for a few minutes once per week (Fig. 1). At the end of the equilibration period, the supernatant solution was carefully pipetted off and analysed. In analysing the solution for Mn^{3+} , a 10 cm³ sample was mixed with 10 cm³ of 0.01 mol dm⁻³ FeSO₄ and the excess FeSO₄ was back titrated with 0.01 mol dm⁻³ KMnO₄. Total manganese in solution was determined by complexometric titration. The equilibration tests were also carried out with heat-treated γ -MnO₂ (24 h in air at 200 and 400° C). The behaviour of well crystallized β -MnO₂, produced by thermal decom-

position of a concentrated $Mn(NO_3)_2$ solution, was also investigated. Electron micrographs and X-ray diffraction patterns were taken before and after the acid treatments.

5. Results

The concentration of dissolved Mn^{3+} , in equilibrium with MnO_2 , was found to increase strongly with H_2SO_4 concentration (Fig. 2), which is in qualitative agreement with Equation 6. However, the measured values are much higher than predicted from Equation 6, which indicates that most of the [Mn^{3+}] (in particular for the case of un-

Fig. 7. Electron micrograph of γ -MnO₂ ICS No. 1, after 26 weeks equilibration in 2 mol dm⁻³ H₂SO₄.

Fig. 8. X-ray diffraction pattern (FeK α) of γ -MnO₂ treated for 6 months in H₂SO₄.

treated γ -MnO₂) stems from the leaching process [10]. Surprisingly, the concentration of dissolved Mn^{3+} dropped abruptly above 9 mol dm⁻³ H₂SO₄, probably as a result of 'salting-out' effects. Fig. 2 also demonstrates that much less Mn³⁺ is released into solution when the samples are heat-treated in air. The least amount of Mn³⁺ was found with β -MnO₂ produced by pyrolysis of Mn(NO₃)₂. Leaching in acid is thus a useful tool for character*izing different types of MnO*₂ and could, with proper consideration of the degree of oxidation, possibly correlate with 'battery activity'. When $MnSO_4$ is added in varying amounts to the H_2SO_4 leach solutions (Fig. 3), dissolved Mn³⁺ stayed constant up to about 10^{-2} mol dm⁻³ MnSO₄, and then increased, in qualitative agreement with Equation 6. It would appear that the γ -MnO₂

Fig. 9. Densitometer curves for γ -MnO₂ before (curve A) and after (curve B) treatment in 10 moldm⁻³ H₂SO₄ for 26 weeks.

samples already initially contained sufficient Mn^{2+} , probably in the form of occluded or surfaceadsorbed $MnSO_4$ stemming from the manufacturing process, to produce that level of Mn^{2+} in solution. It represents about 1 to 2% of the total manganese in the sample. Fig. 4 shows the total amount of manganese, Mn(II) and Mn(III), present in solution, as determined by complexometric titration, for the case of untreated γ -MnO₂. Subtracting the values of Mn^{3+} from Fig. 2, one obtains a measure of the dissolved Mn^{2+} . This curve also shows a sharp drop above 9 mol dm⁻³ H_2SO_4 .

Table 1 lists the maximum total amount of dissolved Mn^{2+} and Mn^{3+} (in 8 mol dm⁻³ H₂SO₄), expressed as a percentage of the total manganese in the sample.

At least a small portion of the dissolved Mn^{2+} (and Mn^{3+}) must stem from the thermodynamically required dissolution of MnO_2 in strong acids according to Equation 9 and some Mn^{3+} must stem from the equilibration process of Equation 8. Chemical dissolution of entire MnO_2 grains is indeed observed, for example, in 4 mol dm⁻³ H₂SO₄ and is shown in Fig. 5. These photographs show MnO_2 particles (dark portions), pressed onto a very fine platinum screen (wire diameter 0.08 mm),

Table 1. Amount of dissolved Mn^{2+} and Mn^{3+} in 8 mol $dm^{-3} H_2SO_4$ expressed as a percentage of the total Mn in the sample

Sample	Mn ²⁺	Mn ³⁺
γ-MnO ₂	2.71	1.06
γ -MnO, (200° C)	1.79	0.54
γ -MnO ₂ (400° C)	1.24	0.28
3-MnO ₂	0.95	0.13

forming the white background in the pictures, at \times 1500 magnification. The experimental technique for observing ultrathin MnO₂ electrodes *in situ* has been described previously [2].

Electron micrographs of γ -MnO₂ samples, taken before and after the 26 week acid treatment, reveal a slight grain coarsening (Figs. 6 and 7). Also, the X-ray diffraction patterns show slightly less broadened lines after the treatment, particularly at the higher acid concentrations (Fig. 8). Acid treated samples, however, still exhibit an unchanged, typical γ -MnO₂ structure (Fig. 9).

References

[1] P. Ruetschi, R. Giovanoli and P. Bürki, Proc. First Manganese Dioxide Symp., Cleveland, October, 1975, p. 12.

- [2] P. Ruetschi, J. Electrochem. Soc. 123 (1976) 495.
- [3] R. G. Selim and J. J. Lingane, Anal. Chim. Acta 21 (1959) 536.
- [4] A. J. Fenton and N. H. Furman, Anal. Chem. 32 (1960) 748.
- [5] G. Davies, Coordin. Chem. Rev. 4 (1969) 199.
- [6] M. Pourbaix, 'Atlas d'Equilibres Electrochimiques', Gauthier-Villars, Paris (1963) p. 286.
- [7] J. P. Brenet, Z. Pavlovic and R. Popovic, Werkstoffe and Corrosion 19 (1968) 393.
- [8] J. Y. Welch, Electrochem. Technol. 5 (1967) 504.
- [9] J. A. Reynaud and J. P. Brenet, Bull. Soc. Chim. France (1968) p. 3505.
- [10] E. Preisler, J. Appl. Electrochem. 6 (1976) 301.
- [11] K. J. Vetter and N. Jaeger, *Electrochim. Acta* 11 (1966) 419.